Extraction of single-trial cortical beta oscillatory activities in EEG signals using empirical mode decomposition
نویسندگان
چکیده
منابع مشابه
Extraction of single-trial cortical beta oscillatory activities in EEG signals using empirical mode decomposition
BACKGROUND Brain oscillatory activities are stochastic and non-linearly dynamic, due to their non-phase-locked nature and inter-trial variability. Non-phase-locked rhythmic signals can vary from trial-to-trial dependent upon variations in a subject's performance and state, which may be linked to fluctuations in expectation, attention, arousal, and task strategy. Therefore, a method that permits...
متن کاملApplication of Empirical Mode Decomposition (EMD) for Automated Detection of epilepsy using EEG signals
Epilepsy is a global disease with considerable incidence due to recurrent unprovoked seizures. These seizures can be noninvasively diagnosed using electroencephalogram (EEG), a measure of neuronal electrical activity in brain recorded along scalp. EEG is highly nonlinear, nonstationary and non-Gaussian in nature. Nonlinear adaptive models such as empirical mode decomposition (EMD) provide intui...
متن کاملAnalysis of normal and epileptic seizure EEG signals using empirical mode decomposition
Epilepsy is one of the most common neurological disorders characterized by transient and unexpected electrical disturbance of the brain. The electroencephalogram (EEG) is an invaluable measurement for the purpose of assessing brain activities, containing information relating to the different physiological states of the brain. It is a very effective tool for understanding the complex dynamical b...
متن کاملThe Removal of EOG Artifacts from EEG Signals using Multivariate Empirical Mode Decomposition
The recorded electroencephalography (EEG) signals are usually contaminated by electrooculography (EOG) artifacts. In this project, the multivariate empirical mode decomposition (MEMD)method will be proposed to remove EOG artifacts (EOAs) from multichannel EEG signals. Firstly, the EEG signals will be decomposed by the MEMD into multiple multivariate intrinsic mode functions (MIMFs). The EOG-rel...
متن کاملCombination of Empirical Mode Decomposition Components of HRV Signals for Discriminating Emotional States
Introduction Automatic human emotion recognition is one of the most interesting topics in the field of affective computing. However, development of a reliable approach with a reasonable recognition rate is a challenging task. The main objective of the present study was to propose a robust method for discrimination of emotional responses thorough examination of heart rate variability (HRV). In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BioMedical Engineering OnLine
سال: 2010
ISSN: 1475-925X
DOI: 10.1186/1475-925x-9-25